
Internal benchmarking using propensity scores for detecting racial bias in police traffic stops

Greg Ridgeway
RAND

John MacDonald
RAND & U. Penn

November 3, 2006

Internal benchmark

Internal benchmarking

❖ Internal benchmark

❖ Internal benchmark

❖ Propensity score weighting

Flagging officers

Conclusions

- Consider a particular officer #534
- 71% of this officer's stops involve a black driver

		Percentage
Time	(12-4pm]	9
	(4-8pm]	57
	(8pm-12am]	34
Day	Mon	20
	Tue	12
	Wed	12
	:	:
Month	Jan	12
	Feb	14
	Mar	7
	Apr	6
	May	8
Area	:	:
	J	49
	K	33
	L	5
	M	11

Internal benchmark

Internal benchmarking

❖ Internal
benchmark

❖ Internal
benchmark

❖ Propensity score
weighting

Flagging officers

Conclusions

- 46% of similarly situated stops made by other officers involved black drivers

		Percentage	Comparison
Time	(12-4pm]	9	9
	(4-8pm]	57	56
	(8pm-12am]	34	35
Day	Mon	20	20
	Tue	12	11
	Wed	12	12
	:	:	:
	Month	12	12
Month	Jan	12	15
	Feb	14	15
	Mar	7	7
	Apr	6	6
	May	8	7
Area	:	:	:
	J	49	48
	K	33	34
	L	5	5
	M	11	11

Propensity score weighting

Internal
benchmarking

❖ Internal
benchmark

❖ Internal
benchmark

❖ Propensity score
weighting

Flagging officers

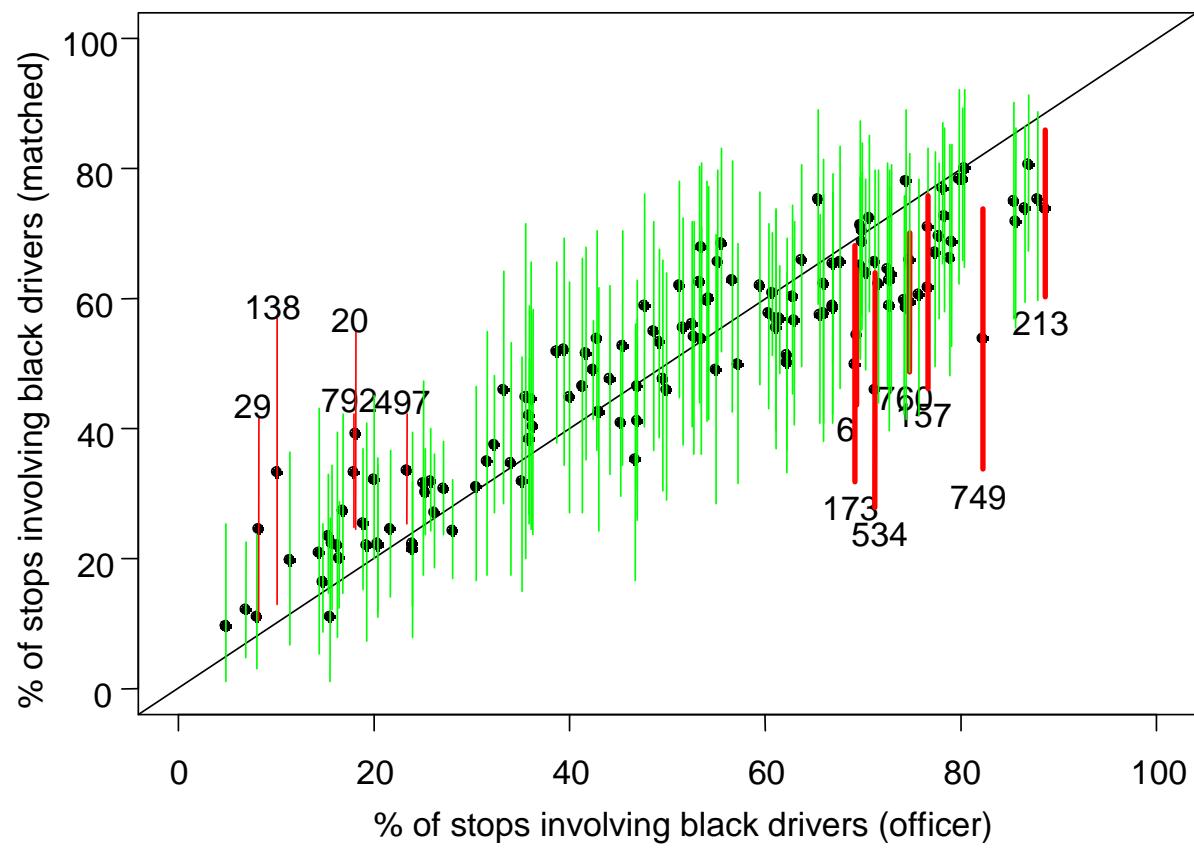
Conclusions

- Reweight stops that other officers made so that they have the same distribution of features

$$f(\mathbf{x}|t = 1) = w(\mathbf{x})f(\mathbf{x}|t = 0)$$

- Solving for $w(\mathbf{x})$ yields the propensity score weight

$$w(\mathbf{x}) = \frac{f(t = 1|\mathbf{x})}{f(t = 0|\mathbf{x})}K = \frac{p(\mathbf{x})}{1 - p(\mathbf{x})}K$$


where $p(\mathbf{x})$ is the probability that a stop with features \mathbf{x} involves the officer in question

- Estimate $p(\mathbf{x})$ using a flexible, non-parametric version of logistic regression
- Compare the percentage of black drivers among the officer's stops with the weighted percentage of black drivers among other stops using weights

$$w_i = p(\mathbf{x}_i)/(1 - p(\mathbf{x}_i))$$

Results

- Seven officers have a substantially greater fraction of stopped black drivers than their internal benchmark

Common approach

Internal
benchmarking

Flagging officers

❖ Results

❖ Common
approach

❖ False discovery
rate

❖ Estimating fdr

Conclusions

- A common approach is to compute z-statistics for each officer

$$z = \frac{p_t - p_c}{\sqrt{\frac{p_t(1-p_t)}{n_t} + \frac{p_c(1-p_c)}{ESS}}}$$

- In the absence of racial bias this would be distributed $N(0,1)$ and a cutoff of 2.0 would be reasonable
- With 133 officers and 133 correlated zs an appropriate reference distribution can be much wider (Efron 2006).

False discovery rate

- Benjamini and Hochberg (1995) pioneered the use of the false discovery rate (fdr)

$$\begin{aligned} P(\text{problem}|z) &= 1 - P(\text{no problem}|z) \\ &= 1 - \frac{f(z|\text{no problem})f(\text{no problem})}{f(z)} \\ &\geq 1 - \frac{f_0(z)}{f(z)} \end{aligned}$$

- If the fraction of problem officers is small then the last inequality is a tight bound

Internal
benchmarking

Flagging officers

❖ Results
❖ Common
approach

❖ False discovery
rate

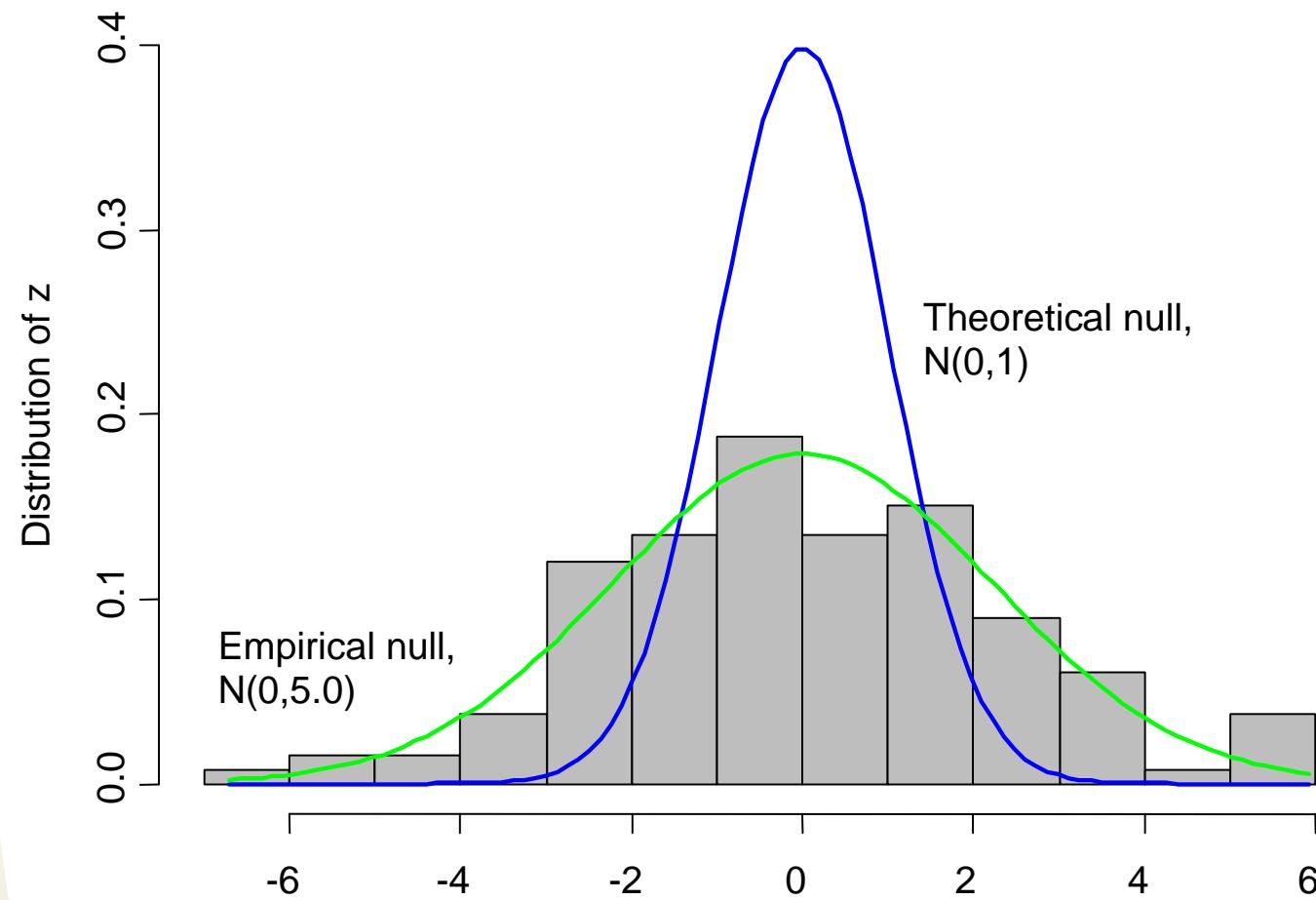
❖ Estimating fdr

Conclusions

Estimating fdr

Internal
benchmarking

Flagging officers


❖ Results
❖ Common
approach

❖ False discovery
rate

❖ Estimating fdr

Conclusions

- Estimate $f_0(z)$ and $f(z)$ from the observed zs
- Right tail consists of 5 officers with “problem officer ” probabilities ranging from 70% to 86%

Conclusions

- Internal benchmarking can help identify problem officers
- Propensity score weighting offers a sound process for constructing the internal benchmark
- Flagging particular officers requires dealing with the issues of massive multiple comparisons
- False discovery rate offer a promising direction

Internal
benchmarking

Flagging officers

Conclusions

❖ Conclusions